

Motor learning of handrim wheelchair propulsion

Riemer Vegter

Luc van der Woude Claudine Lamoth Dirkjan Veeger Sonja de Groot

Mission statement

Get from here

To here

Center for Human Movement Sciences

University Medical Center Groningen

Today

• Overview of experiments

Results of motor learning

University Medical Center Groninger

Motor learning

1. Improved mechanical efficiency

2. Changes in propulsion technique

Center for Human Movement Sciences

University Medical Center Groning

1. Mechanical efficiency

> Percentage of internally liberated energy that is used for propulsion:

Propulsion technique

Center for Human Movement Sciences

University Medical Center Groningen

2.

Experiments 2010-2012

Center for Human Movement Sciences

<u>į</u>

University Medical Center Groningen

Wednesday, October 31, 12

university of groningen

All interventions followed the same type of trial setup and total dose

Center for Human Movement Sciences

Database of 83 subjects

• The same pretest

Different interventions

• The same posttest

n=83	Mean	Std
age	22.8	3.6
body mass	80.2	11.4
height	1.87	0.07

Center for Human Movement Sciences

Matlab

Function to do Push-detection

Function to do Push-by-push analysis

8	
%Input:	
% SampleNr:	vector:Sample number
3 Time:	vector: Time dependent on sample number and samplefrequency
& Angle:	vector; Angle in RADIANS
& Fy:	vector, Newton, Local, non rotating x-axes of the wheel axle
& Fu:	vector, Newton, Local, non rotating waves of the wheel ave
5 Po.	vector, Newton Local non rotating y-avec of the wheel avia
h Mys	vector, Newton, Motar, Horal, non rotating x-aves of the wheel avia
S Mus	vector, Newton Meter, local, non rotating vares of the wheel avia
s Hy:	vector, Newton Netter, Local, non rotating y-axes of the wheel axis
S ALL	vector; Newcon-Necer, Local, non intaling 2-axes of the wheel axis.
s Sampierreq:	scalar; sample frequency of the data
Soutmut .	
soucpuci	t columns and 0 coloulated columns for each comple
satructi: 9 inpu	t columns and y calculated columns for each sample.
sstruct21 In eac	n row a push, indices, time and calculated variables.
sstructs: Mean a	nd std of important variables over the total time period
acopyright 2011,	Riemer vegter

Center for Human Movement Sciences

Research question

 What motor learning processes take place during the 12 min pretest for all subjects in the database?

Change in mechanical efficiency

Center for Human Movement Sciences

University Medical Center Groningen

Change in propulsion technique

Center for Human Movement Sciences

Center for Human Movement Sciences

Conclusion

• In the first 12 minutes people reduce their energy cost

• In the first 12 minutes subject change their propulsion technique

Center for Human Movement Sciences

University Medical Center Groningen

Future work

• Further explore the relation of propulsion technique with mechanical efficiency

 Add kinematics (3d position registration) to kinetic (Measurement-wheels) data

Center for Human Movement Sciences

Questions ?

<u>r.j.k.vegter@umcg.nl</u> <u>http://www.rug.nl/staff/r.j.k.vegter/index</u>

Center for Human Movement Sciences

